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J .  Phys. A: Math. Gen., Vol. 12, No. 4, 1979. Printed in Great Britain 

On renormalisation of the quantum stress tensor in curved 
space-time by dimensional regularisation 

T S Bunch 
Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA 

Received 12 July 1978 

Abstract. Using dimensional regularisation, a prescription is given for obtaining a finite 
renormalised stress tensor in curved space-time. Renormalisation is carried out by 
renormalising coupling constants in the n-dimensional Einstein equation generalised to 
include tensors which are fourth order in derivatives of the metric. Except for the special 
case of a massless conformal field in a conformally flat space-time, this procedure is not 
unique. There exists an infinite one-parameter family of renormalisation ansurze differing 
from each other in the finite renormalisation that takes place. Nevertheless, the renor- 
malised stress tensor for a conformally invariant field theory acquires a nonzero trace which 
is independent of the renormalisation ansatz used and which has a value in agreement with 
that obtained by other methods. A comparison is made with some earlier work using 
dimensional regularisation which is shown to be in error. 

1. Introduction 

One of the difficulties encountered in the problem of constructing a well defined 
quantum theory of matter fields propagating in an unquantised background space-time 
is the appearance of infinities in matrix elements of the quantum stress tensor, T,". In  
particular, the expectation value of T,, in some state of the quantum field, which will be 
written (01 TJO) since in practice the state is usually taken to be the vacuum, is infinite 
and must be renormalised if it is to be used as the source in Einstein's equations. In 
recent years a number of different regularisation schemes have been employed to deal 
with these divergences (Zel'dovich and Starobinsky 1971, 1972, Parker and Fulling 
1974, Candelas and Raine 1975, Dowker and Critchley 1976, Davies et a1 1976, 
Christensen 1976, Brown 1976, Brown and Cassidy 1976, Hawking 1977, Bernard and 
Duncan 1977) and in a number of cases explicit finite expressions have been obtained 
for the renormalised stress tensor (01 T,vlO)ren in particular space-times (Candelas and 
Raine 1975, Dowker and Critchley 1976, Davies et a1 1976, Bernard and Duncan 
1977, Davies et a1 1977, Bunch and Davies 1978a, b, Brown and Cassidy 1977). The 
most striking result which has been obtained by these methods is the appearance of a 
nonzero trace in (01 T,vlO)ren for fields which are conformally invariant and which 
therefore have classical stress tensors whose traces vanish identically (Dowker and 
Critchley 1976, Davies et a1 1976, Hawking 1977, Deser et a1 1976, Christensen and 
Fulling 1977, Duff 1977, Tsao 1977). In order to understand how this trace anomaly 
arises, it is important to make a distinction between regularisation and renormalisation. 
Regularisation involves redefining (01 Tw,,lO) in such a way that it becomes dependent on 
some parameter, or parameters, E. As long as E f 0, (O~T,u(~)~O) is finite: the infinite 
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quantity (OIT,,~O) is recovered by removing the regularisation-that is, by letting E + 0. 
Renormalisation involves separating (01 T,, (€)IO) into two parts, one of which is 
divergent as E + 0 and the other finite: 

( 1 . 1 )  (0) T , v ( E ) I O )  = (01 Twv(E) lO)d iv  + (o lT ,v (E) lO) f in  

where 

The renormalisation is completed by discarding (OIT,v(E)IO)d,v and letting E + 0 to 
obtain 

(OlT,vlO)ren = lim (olT+v(E)(0)fin =lim [(OIT,y(~)lO) - ( O I T ~ ~ v ( E ) / o ) d i b l .  (1.2) 

Provided that the regularisation scheme respects all the invariances of the theory 
including conformal invariance, (01 TWy (€)IO) will be traceless if TWy is. Consequently 

€’O s -0 

Thus if the renormalised stress tensor is to acquire an anomalous trace, the divergent 
quantity (OlT,,(E)1O)dlV must have a finite nonzero trace in the limit E + 0 equal to the 
negative of the anomalous trace. 

The main difficulties with renormalisation are how to make the separation ( 1 . 1 )  and 
how to justify discarding the divergent terms. One expects that these problems can be 
tackled by remembering that (OIT,yIO) is the source term in Einstein‘s equation, which 
in four dimensions is: 

(1.4) 

where A is the cosmological constant, G is Newton’s constant and G,, Einstein’s 
tensor. The two conserved tensors (’)HFY and i2’H,y are defined by 

Ag,“ + G,, + A  i1)HFV + A  i2’HeV = 8.rrG(OIT,,IO) 

= +RaPR,pg,, - 2RaPR,,p, f R;,” -OR,, - $ORg,,. (1.6) 

Note that in classical relativity one always has A = A 2  = 0 and usually A = 0. The 
tensors g,,, “’HfiY and ‘2)H,y are required in the present theory to assist in  the 
renormalisation of (01 T,,/O). However, after renormalisation, the renormalised 
coefficients of these tensors may presumably be taken to be zero. Because of the 
Gauss-Bonnet theorem in four dimensions, which implies that 

the tensor obtained by varying 5 J R “ ~ ~ ~ R , ~ ~ ~  d4x with respect to the metric is a linear 
combination of “’H,,, and i2)H,Y. The separation (1.1) is now made by taking 
(olT,y(~)lo)div to be a linear combination of tensors appearing on the left-hand side of 
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equation (1.4), with coefficients which diverge as E -;* 0. ( O l T , u ( E ) l o ) d i v  is then transfer- 
red to the left-hand side of (1.4) and the new coefficients thus obtained are taken to be 
the observable coefficients whose finite values are to be determined by experiment. 
Putting E = 0 leaves (OIT,ylO),e, on the right-hand side of equation (1.4) and the theory 
is now free of divergences. The only problem with this approach is that the tensors 
(*)HLIY and c2)H,y both have traces proportional to OR, so that this appears to be the 
only quantity which can arise in the anomalous trace, the traces of G,, and g,, being of 
the wrong dimension to appear in (O~T",O>,,, when the quantum field is massless. 
However, it is now well established (Deser et a1 1976, Christensen and Fulling 1977, 
Duff 1977, Tsao 1977) that the anomalous trace contains terms proportional to OR, 
RaPRmp-$R2 and CaPvsCaPys, where Capvs is the Weyl tensor. Because of this 
difficulty, few attempts have been made to renormalise (01 T,ulO) by renormalising 
coupling constants in Einstein's equation. An early paper based on adiabatic 
regularisation (Fulling and Parker 1974) was able to remove divergences from (01 T,,/O) 
but ran into difficulties over some finite terms of precisely the kind associated with the 
trace anomaly. The finite terms appearing in equation (3.20) of Fulling and Parker 
(1974) are, in spite of appearances, entirely independent of the mass so that the inability 
to remove these terms by renormalisation occurs for both massive and massless field 
theories. 

An alternative approach to the renormalisation problem, and one that has 
frequently been used in practice, is to look at the action which leads to equation (1.4). 
This action may be written 

S = S ~ + W = J ~ ~ ~ ~ ' X + J ~ ~ ~ ' ) ~ ~ ~  (1.8) 

and the field equations (1.4) are given by: 

SS/Gg"" = 0. (1.9) 

The gravitational Lagrangian ZG is a linear combination of 1, R, R2 and R"@RmB so that 
the left-hand side of equation (1.4) is obtained from: 

(1.10) 

where 9 ( " ( x )  is the effective Lagrangian for the field theory and W is the effective 
action. 9 ' * ) ( x )  is divergent and must be regularised to give 

9 y x ;  E )  = 9 2 1 ( x ;  € ) + 2 ? : ; ; ( x ;  E ) .  (1.11) 

9 " ) ( x )  is now renormalised by absorbing 9:;; (x ; E )  into TG with renormalisation of 
coupling constants, leaving 9;:; (x ; E ) .  The connection between this approach and the 
previous one is that 

(1.12) 

Renormalisation of the action is an apparent improvement over renormalisation of the 
stress tensor since the inconsistencies between the traces of (O~T,,v~O)ren and 
(OJT,u(~) /O)div  do not arise. Indeed, this approach has been used before and forms the 
basis of many of the derivations of the anomaly (Deser et a1 1976, Duff 1977, Tsao 
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1977). Nevertheless it  is disturbing that two very closely connected procedures appear 
to be inconsistent with one another. 

The main purpose of this paper is to show how this inconsistency can be removed, 
and a well defined renormalisation prescription given which can be implemented either 
in the action for the theory or in the field equations (1.4). The method of regularisation 
which will be used is dimensional regularisation and the essential idea is the recognition 
that renormalisation of coupling constants must take place before the regularisation is 
removed. This means that both the effective action and the stress tensor must be 
renormalised in n dimensions. Dimensional regularisation has been used before in an 
attempt to define a renormalised stress tensor in curved space-time (Brown 1976, 
Brown and Cassidy 1976). However, a number of mistakes were made in that work and 
the secondary purpose of this paper is to examine Brown (1976) in detail in order to 
clarify how to perform the correct renormalisation of the quantum stress tensor by 
dimensional regularisation. For simplicity the quantum field is taken to be a scalar field; 
fields of higher spin could be treated in exactly the same way and will not therefore be 
discussed. Sign conventions are the same as those used in Christensen (1976) and 
Brown (1976). 

2. Renormalisation of the quantum stress tensor 

The action functional for a scalar field 4 ( x )  in  an n-dimensional space-time with metric 
g,, is: 

S[4]=-+/ Jgigwv d,d a U 4 + 5 R 4 2 + m 2 4 2 ) d “ x  (2.1) 

where g = -det g,,, m is the mass of the scalar field, R the Ricci scalar and ( a constant. 
If the theory based on S[4] is to be conformally invariant in n dimensions when m = 0, 
one requires 

E = ( n  -2) /4(n-  1). (2.2) 

04 - ((R + WI ’ )4  = 0 (2.3) 

The scalar field equation, obtained by varying S with respect to 4, is: 

where 0 = g”“V,V,. The stress tensor is 

2 ss T =-- 
,U Jisg, ’ ”  

= (1 - 2 5 )  a w 4  d”4 + i25-iig,” aR4 aa4 -254vw a”4 

+26gwU4V“ aa4 +5Gw,42-h2g,U42.  (2.4) 
Although the quantity which acts as the source in Einstein’s equation (1.4) is the 
expectation value of T,“ in some quantum state, De Witt (1975) has shown that the 
divergences in this quantity are identical to the divergences in 

where ]in) and lout) are vacuum states in initial and final static regions of the space-time 
which, for the purposes of obtaining the divergences in ( 2 . 5 )  and hence in (OITey/O), are 
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assumed to exist although they need not exist in the particular space-time in which the 
state 10) is defined. For a space-time which contains such static regions but which is 
otherwise arbitrary, (Tu") can be obtained from the effective action which is defined to 
be 

W = -i log(out1in). 

Under variations with respect to 

G(outJin) 
(outlin) ' 

S W = - i  

Schwinger's variational principle (Schwinger 195 1) states that 

S(outlin) = i(out/SSlin) 

and hence 

(2.8) 

In n dimensions, the effective action W may be written 

W = Lf"'(x)&d".r (2.10) I 
where Lf"'(x) is the effective Lagrangian which has a representation of the form 

1 ids 2 exp(-im s)F(x,  is). 
2(4n-)"" lo (is) L f y x )  = (2.11) 

This representation for the effective action is well known (Dowker and Critchley 1976, 
Brown 1976, De Witt 1975) and details of its derivation will not be given here. The 
function F(x,  is) satisfies the boundary condition 

F(x,  0) = 1. (2.12) 

Convergence of the integral in  equation (2.1 1) at the upper limit of integration is 
guaranteed by the boundary conditions on the Feynman propagator from which 2 ( " ( x )  
is obtained, which require that m 2  contain a small negative imaginary part. 
Consequently the divergences all occur at the lower limit of integration at which s = 0, 
and it therefore suffices to expand F(x,  is) in a power series about s = 0: 

P 

~ ( x ,  is) = ak(x)(is)&. (2.13) 

The coefficients a k ( x )  in this expansion are all geometric scalars and, on dimensional 
grounds, each term in a k ( x )  must contain 2 k  derivatives of the metric. The first three of 
these have been calculated elsewhere (Christensen 1976, Brown 1976, Brown and 
Cassidy 1976); they are 

k =O 

ao(x)  = 1 (2.14) 

a i(x 1 = tb- O R  (2.15) 

a2(x) = &ROLPYGR,a,s -&ROLPR,, +k($-()OR ++(k-&)*R*. (2.16) 
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Substituting equation (2.13) in (2.1 1) and integrating, 

(2.17) 

From this expression, it is easy to see that if n = 4, the r function has poles for k = 0, 1 
and 2. These poles will eventually be removed by renormalising coupling constants in 
ZG. In order to do this consistently it is necessary that both LfG and 2Zi1) have the same 
dimensions, and the most convenient way of ensuring this is to keep the dimensions of 
9"' fixed for arbitrary space-time dimension n by introducing an arbitrary parameter K 

having dimensions of mass, and to rewrite (2.17) as 

(2.18) 

Although it is not strictly necessary to what follows, it is convenient to make the 
following expansions in equation (2.18): 

(WI/K)"-~= 1 + t ( n  -4) ln(m2/K2)+O(n -412 

y + O ( n  -4) (2.20) r ( 2  - n/2) = -- 

(2.19) 

2 
4 -n  

r( - -) n = "-( 
- y )  + O(n - 4). 

2 n(n-2)  4 -n  

Then equation (2.18) becomes 

(2.21) 

(2.22) 

(2.23) 

where terms of order (n -4), which disappear when the limit n + 4 is taken after the 
renormalisation has been performed, have been omitted. Expression (2.23) is the 
dimensionally regularised effective Lagrangian, the regularisation parameter being 
E = n  -4. Because of the structure of uo, a l  and u2 (equations (2.14)-(2.16)) it is 
possible to remove the divergent pole terms provided that the gravitational Lagrangian 
contains terms which are fourth order in derivatives of the metric. There is nevertheless 
some ambiguity in  precisely which terms in (2.23) should be removed by renor- 
malisation and the following two renormalisation ansatze suggest themselves: 

(i) Remove only the pole terms; this means that the divergent part of the effective 
Lagrangian is taken to be 

(2.24) 
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(ii) Remove all terms which are fourth order or lower in derivatives of the metric: the 
divergent part of the effective Lagrangian is then 

(2.25) 

Ansatz (ii) is really an infinite one-parameter family of ansatze since the parameter K is 
arbitrary. Ansatz (i) is a special case of (ii) obtained by taking 

K = (2.26) 

Consequently, in what follows expression (2.25) will be used for 2 i i ( x )  and a 
corresponding expression for ( T,Y)diV will be obtained by functional differentiation with 
respect to g,". This expression will contain a finite term proportional to y +ln(m2/KZ) 
which would not have appeared if equation (2.24) has been taken as the starting point. 
In order to calculate (TpY)diV, the following expressions valid in n dimensions will be 
required: 

(2.28) 

(2.29) 

Using equations (2.27)-(2.29) and also equations (1.5) and (1.6) which are valid in n 
dimensions, and substituting for ao, a l  and a 2  from equations (2.14)-(2.16), one finds 

This expression for the divergences in ( T g V )  is valid for arbitrary 4 and may be 
considered to be equivalent to expressions (6.2)-(6.6) of Christensen (1976) which were 
obtained by regularising ( T,") using point-splitting. It is evident from equation (2.30) 
that (01 T,ylO) can be renormalised by renormalising coupling constants in the n 
dimensional Einstein equation which reads: 

.ig,u+G,,,+AH,,+A1i1)H,,+A2'2)H," = ~TG(OIT,,IO). (2.31) 

Because the Gauss-Nonnet theorem (1.7) holds only in four dimensions, equation 
(2.13) contains one more tensor than (1.4).  Unlike the attempt at renormalisation in 
four dimensions outlined in § 1, renormalisation in n dimensions is consistent with the 
existence of the trace anomaly-indeed, the trace anomaly is a natural consequence of 
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this renormalisation. For m = 0 and 5 = ( n  - 2)/4(n - l ) ,  the trace of equation (2.30) is 
finite in the limit n + 4: 

(CaLPtSCaPy~ + RaPR,,  -:R2+OR). 
1 - 

(2.32) 

(2.33) 

This is the negative of the trace anomaly (Christensen and Fulling 1977, Tsao 1977) as 
required by equation (1.3). The anomaly arises directly from the pole terms and does 
not depend on the term y+ln(m2/K2).  Consequently, the anomaly is independent of 
which renormalisation ansatz is used. 

It has been argued by Dowker and Critchley (1977) that it is necessary to discard the 
finite terms proportional to ln(m2/K2) in order to acquire a trace anomaly. Their 
argument is that since the trace of (TcIy)  is from equation (2.4) using the field equation 
(2.3): 

(2.34) (Tz ) = -m2(b’) = im2GF(X, X‘) 

where GF(x, x’) is the Feynman Green’s function, and since 

GF(x, x )  = -2i a2?(”/am2 (2.35) 

it follows that: 

Thus, by equation (1.3) 

2 J=G: (O1Tz lo},,, = -1im lim 2m 7 
m - 0  .-4 dm 

(2.36) 

(2.37) 

and the result (OITf: = a 2 ( x ) / l 6 r 2  is obtained if and only if 2% contains the term 
a2(x) ln(m2/K2). The flaw in this argument lies in equation (2.34). Although it is true 
that the mass-independent terms in equation (2.4) are traceless and hence that the 
dimensionally regularised expression arising from these terms is also traceless, the pole 
terms alone are not traceless. Discarding only the pole terms (ansatz (i)) gives rise to 
the anomalous trace, not from 

lim m ’ ( b 2 )  
m - 0  

which contains no poles, but from the mass-independent terms in equation (2.4). The 
equivalence of the two routes to the trace anomaly, via either the pole terms or, using 
equation (2.37), the ln(m2/K2) term, is a reflection of the fact that, for ( = i :  

2 6 Jga2(x) d“x = ( n  -4)a2(x).  JF Sg”” 
(2.38) 

Presumably a relation of this kind holds for all ak(x) for suitable 2. 
The structure of (TpY}diV can be made more transparent by expressing each of the 

tensors HPy,  (liHcIY and (*)HcIY in terms of the Weyl and Ricci tensors. The Weyl tensor 
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3n - 2  
( n  - l ) ( n  - 2 )  

+ R ' g P u  - 40R, ,  + 2 R  

(2.39) 

(2.40) 

4 
n - 2  '*'HWu = R,,v -OR,, -2JlRg,, -2C,,p,RmP +- 

n - 6  2n 2 
R2g,,. 

( n  - l ) ( n  - 2 )  +- R"PRQfig,,-(n - - 2 )  RR,, + 2(n - 2 )  
(2.41) 

From equation (1.7) it follows that H,, -4'2'H,y +'"H,, vanishes in four dimensions. 
In n dimensions, 

HNY - 4"'H,, + 'l'H," = ~CuPYsC,~ysg, ,  - 2 C , 0 p y C ~ P y  - ( n  -4)'"HgY 

where 

(2.42) 

2 n ( n  - 3 )  ( n  + 2 ) ( n  - 3 )  
( n  - l ) ( n  - 2 )  2RR,u - 2 ( n  - l ) ( n  - 2)  + 2 R '&". (2.43) 

The tensor '3)Hcry is a generalisation of a tensor that has been encountered before in 
calculations of (01 T,,,lO)ren in conformally flat space-times (Davies et a1 1977). When 
Cappu = 0 and n = 4, equation (2.43) reduces to the first expression in equation (3.12) of 
Davies et a1 (1977) apart from differences in sign convention. However, the second 
expression in Davies eta1 (1977) (equation (3.12)) is not consistent with equation (2.43) 
when CUFpv # 0. To obtain a consistent expression, one would have to add 3Ca,,,RaP 
to equation (2.43),  but there is no particular reason to do this and equation (2.43) 
appears to be the more natural generalisation to non-conformally flat space-times. 
Substituting equations (2.42) and (2.43) in (2.30),  

1 1 1  m 2 ( n  -4)G,, ( T  ) ,  =---- 
n ( n  - 2 )  3(n  - l ) ( n  - 2 )  drv 

(2.44) 
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where the substitution (2.2) has been made, and the last term in (2.30) dropped since it 
is of order ( n  -4). Now write 

where 

n - 2  1 n - 2  
2(n - 1) 2(n - 1) n - 3  R;,” -OR,, +- ORg,, - - caIlpuR -- - 

n 1 n + - R,,R: - - R aPRmpgwU - RR,, n - 2  n - 2  ( n  - l ) ( n  - 2) 

1 
( n  - l ) ( n  - 2) + R2g,,. 

(2.46) 

(2.47) 

From equation (2.47) it follows that A,, is traceless in n dimensions, and from equation 
(2.45) one can see that, in four dimensions 

(2.48) 

This vanishes in conformally flat space-times. Substituting equation (2.45) in equation 
(2.441, 

l ( 1 )  A ,U = (2)H,y - T HWY. 

1 1 1  (T ) . =-------- 
w u  div 

n - 6  
360(n -3 )  

m2GFv 1 “’H - (3’H,v]. (2.49) 
1 

--[3(n - l ) (n  -2)-360(n - 1) 

It is worth noting that since, in four dimensions (using equation (2.42) and the 
Gauss-Bonnet theorem) 

c w a p y c : p y  = ~CapysCm*Y8g,” (2.50) 

the coefficient of y+1n(m2/~’ )  may be taken to be 

(2.51) 

Consequently, for a massless conformal field in a conformally invariant space-time 
there is no term involving ln(m’/K2) and hence the renormalisation is unique. This is a 
reflection of the fact that in this case (OIT,ulO)ren is determined by a choice of quantum 
state, IO), and the value of (O~T~~O)ren  which is independent of the renormalisation 
ansarz used (see remarks following equation (2.33)). If the state 10) is the vacuum state 
in the conformally related flat space-time, (OIT,vlO)ren is given by (Davies er a1 1977, 
Brown and Cassidy 1977) 

+I ( 2 )  tm4gWLY 30( H,” -f“’H,,). 
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This result can be seen to arise from the subtraction of the finite term contained in 
the last bracket in equation (2.49), which for m = 0 and n = 4 is the negative of equation 
(2.52). Evidently the divergent quantity (O(T,,lO) is cancelled by the term proportional 
to (n -4)-’AFV, which is of course traceless. 

The uniqueness of the renormalisation ansatz in this special case means that, for a 
given quantum state IO), there is no ambiguity in (OITwv(0)ren. It does not mean, 
however, that if a different quantum state is chosen the renormalised stress tensor will 
be given by equation (2.52): it can differ from this by any traceless, conserved tensor 
(Bunch 1978). 

The renormalised stress tensor in two dimensions can be obtained in a similar 
manner to that in four dimensions. It does not matter that there is no Einstein equation 
in two dimensions since renormalisation of the stress tensor takes place in n dimensions. 
Equation (2.23) is replaced by 

21[ : 1 p’(x) = -~ 1 ,,,,[-+-(y+lnm 1 1  / K  - -m ao+al 
(457) n - 2  2 

(2.53) 

The regularisation parameter is now E = n -2 .  As before, there is no unique renor- 
malisation ansatz. If all terms which are second order or lower in derivatives of the 
metric (ansatz (ii)) are discarded, 

(2.54) 

The divergences in the stress tensor are 

These can be removed by renormalisation of the cosmological constant A and Newton’s 
gravitational constant G. For a massless field, the trace of ( T W Y ) d , v  is finite and nonzero 
as n + 2. since 

gw’”G,, = (1 -5). (2.56) 

and hence 

Putting n = 2 requires 6 = 0 for conformal invariance, and so: 

(2.57) 

(2.58) 

This is, as expected, the negative of the anomalous trace for a massless conformal scalar 
field in a two-dimensional space-time. 
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3. Discussion and comparison with some earlier work 

In the previous section it was shown that by using dimensional regularisation it is 
possible to renormalise the quantum stress tensor in curved space-time by renormalis- 
ing coupling constants in Einstein’s equation, and that this renormalisation leads 
directly to the well known trace anomaly for conformally invariant fields. Because of 
the Gauss-Bonnet theorem, it appears that regularisation schemes which work entirely 
in two or four dimensions will not give rise to this kind of renormalisation. This shows 
up strikingly in two dimensions in which there is no Einstein equation at all, precisely 
because the two-dimensional Gauss-Bonnet theorem implies that the Einstein tensor 
vanishes identically. Consequently, dimensional regularisation appears to be necessary 
for the renormalisation of coupling constants in Einstein’s equation. An attempt at 
such a renormalisation has been made before (Brown 1976, Brown and Cassidy 1976) 
but that work contains a number of important differences from the approach described 
in 8 2. These differences will now be discussed in order to reduce any confusion that 
might otherwise arise. For simplicity a detailed comparison will only be made for the 
two-dimensional stress tensor, but the comments made below apply equally to the 
four-dimensional case. 

In Brown (1976) it is shown that both the effective Lagrangian T ‘ * ) ( x )  and the 
stress tensor (Tgy) can be expressed as integrals of the form: 

Integrating by parts, assuming n < 2 (continuation to other values of n can take place 
later): 

But 

and hence 

a 
1 - n/2 81s 

Jc1 1 
I=----- F ( 0 ;  n ) - [ )  ids ln(K2is)-F(is; n )  

For example, the effective Lagrangian may be expressed by this method as: 

(3.4) 

(3.5) 

The functions F ( i s ;  n )  and F(x ; is) appearing in equations (3.1) and (3.5) are, of course, 
not the same. One can check that substituting equation (2.13) in equation (3.5) gives 
rise to equation (2.53). In equation (3.5), the first term is the pole term; the ln(m2/K2) 
term is contained in the second term in equation (3.5). Discarding the entire first term 
would then be equivalent to ansatz (i). However, in Brown (1976) an attempt is made 
to continue back to two dimensions before the pole term is discarded. For example, this 
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means that the first term in equation (3.4) is written as 

1 aF 
F ( O ;  n )  = ----F(o; 2) - 2- I (3.6) 

1 
1 - n/2 1 - n/2 an n = 2  

and the term (1 -n/2)-’F(O; 2) is considered to be the pole term which is to be 
discarded. Brown also discards some of the finite term in equation (3.6), that arising 
from the explicit n dependence of (4~)~”. The divergent part of the effective action is 
then 

w d , v  = &(A + L a )  (&R - m 2 ,  d2x 
477 (3.7) 

where L2 = 1 In 4.lr, Because the continuation to two dimensions has already taken 
place, the term 5 JgR d2x, which is a metric-independent constant, can be omitted from 
equation (3.7) leaving 

WdiV = -- m2(  - + L 2 )  I \ rgd2x ,  
477 2 - n  (3.8) 

The corresponding divergences in the stress tensor are shown in Brown (1976) to be 

These are indeed the variational derivative of equation (3.8). However, it is quite 
clear that subtracting equation (3.9) from (OlT,, lO) will not give rise to an anomalous 
trace when m = 0. A similar procedure is used in the four-dimensional calculation and 
the divergences in the stress tensor are again traceless when m = 0 (see equations 
(1.35)-(1.40) of Brown 1976). How then does Brown obtain an anomalous trace? The 
answer is that a nonzero trace is apparently obtained in those terms in (T,”) which 
remain after the pole terms (3.9) have been removed. Brown calls these terms (T,v)ren, 
but it should be remembered that the renormalised quantity which acts as the source in 
Einstein’s equations is defined by equation (1.2). The trace of (TFY)dlV should be the 
negative of the trace anomaly, and since Brown has in fact subtracted only a term which 
is traceless when m = 0, what remains should have a trace which is the negative of that 
claimed. To clear up the confusion arising from this, consider equation (3.20) of Brown 
(1976): 

(3.10) 

where TFY(x; is; n)  is given by equation (3.21) of Brown (1976). This is of the form 
(3.1) and hence may be expressed according to equation (3.4) as 

1 a 
als 

ids ln(K2is) -(exp(-im2s)TFv(x ; is ; n)). (3.11) 

Brown now expands the first term about n = 2, discards the pole term and claims 
that when m = 0 the trace of the remainder is R / 2 4 ~ .  However, using equation (3.21) 
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of Brown (1976) it can be seen that the first term in equation (3.11) above is 

(3.12) 

The first term in equation (3.12) is the term which Brown discards. The second term has 
trace R/24rr. He also discards the third term on the grounds that G,, vanishes in two 
dimensions. But clearly 

(3.13) 

since it has nonzero trace. Indeed, the trace of the third term in (3.12) is -R/24rr, so 
that equation (3.12) is actually traceless when m = 0. There are also terms of second 
order in the derivatives of the metric which have nonzero trace when m = 0 contained in 
the second term of equation (3.1 1). Writing this term as 

- ids ln(K2is) exp(-im2s) (3.14) 

and using equation (3.21) of Brown (1976) and the expansion (2.13) one obtains four 
terms which are of second order in derivatives of the metric, the first three coming from 
-m2T,, and the fourth from aT,,/ais: 

m2(2 - n) 
2n 

ids In(K2is) exp(-im2s) g,va 1 (x 1 

+ m2(;- (3.15) 

(3.16) 

This integral can be evaluated using expression (4.352) of Gradshteyn and Ryzhik 
(1965) to give 

-G,,(y+In m 2 / ~ 2 ) ] .  (3.17) 
5-2 1 2-n 

The trace of equation (3.17) is, for arbitrary n, 

(3.18) 

Putting n = 2 ,5  = 0 gives -R/24.rr. Thus the terms in equation (3.11) which Brown fails 
to discard do indeed have a trace equal to - R / 2 4 ~ ,  the negative of the trace anomaly, 
and not R/24.ir as Brown himself claims. From equations (3.12) and (3.17) it can be 
seen that this is true whether one intends to renormalise using ansatz (i) or ansatz (ii). 
The pole terms alone (the first and third terms in equation (3.12)) have a trace -R/247~ 
when m = 0, as does the entire term of second order in derivatives of the metric (the sum 
of equations (3.12) and (3.17)). 
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Finally, it should be emphasised that the problem of how to obtain (OITfivlO)ren in a 
particular space-time with a particular quantum state 10) is not yet complete. This 
paper has described how (O/T,,JO)di, can be calculated in an arbitrary space-time and 
how it can be removed by renormalisation, but it has not even started to consider how to 
obtain the dimensionally regularised quantity (01 TJO) which, according to equation 
(1.2), must be known before (01 TMu/O)ren can be calculated. In this respect, dimensional 
regularisation at its present stage of development is a less practical regularisation 
scheme than covariant point-splitting which has been used to calculate (OITfiv/O)ren for a 
number of different space-times (Davies et a1 1976, Christensen 1976, Davies er a1 
1977, Bunch and Davies 1978a, b), Bunch (1977, 1978)). However, if this difficulty 
could be overcome, dimensional regularisation might prove to be a more efficient 
means of obtaining (O/TM,~O),,n. 
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